The effects of a dominant connexin32 mutant in myelinating Schwann cells.
نویسندگان
چکیده
Mutations in GJB1, the gene encoding the gap junction protein connexin32 (Cx32), cause X-linked Charcot-Marie-Tooth disease, an inherited demyelinating peripheral neuropathy. We generated transgenic mice that express the R142W mutation in myelinating Schwann cells. The R142W mutant protein was aberrantly localized to the Golgi, indicating that it does not traffic properly, but the molecular organization of the myelin sheath, including the localization of Cx29, another connexin expressed by myelinating Schwann cells, was not disrupted. In a wild type background, this mutation dramatically decreased the level of wild type mouse Cx32 in immunoblots of sciatic nerve and caused demyelination. The expression of wild type human Cx32 with the same transgenic construct had different effects-increased amounts of Cx32, normal localization of Cx32 at nodes and incisures, and split myelin sheaths. Thus, the R142W mutant protein has dominant effects that are distinct from overexpression.
منابع مشابه
Prenylation-defective human connexin32 mutants are normally localized and function equivalently to wild-type connexin32 in myelinating Schwann cells.
Mutations in GJB1, the gene encoding the gap junction protein connexin32 (Cx32), cause the X-linked form of Charcot-Marie-Tooth disease, an inherited demyelinating neuropathy. The C terminus of human Cx32 contains a putative prenylation motif that is conserved in Cx32 orthologs. Using [3H]mevalonolactone ([3H]MVA) incorporation, we demonstrated that wild-type human connexin32 can be prenylated ...
متن کاملTransgenic expression of human connexin32 in myelinating Schwann cells prevents demyelination in connexin32-null mice.
Mutations in Gap Junction beta1 (GJB1), the gene encoding the gap junction protein connexin32 (Cx32), cause the X-linked form of Charcot-Marie-Tooth disease (CMT1X), an inherited demyelinating neuropathy. We investigated the possibility that the expression of mutant Cx32 in other cells besides myelinating Schwann cells contributes to the development of demyelination. Human Cx32 was expressed in...
متن کاملConnexin32 mutations cause loss of function in Schwann cells and oligodendrocytes leading to PNS and CNS myelination defects.
The gap junction (GJ) protein connexin32 (Cx32) is expressed by myelinating Schwann cells and oligodendrocytes and is mutated in X-linked Charcot-Marie-Tooth disease. In addition to a demyelinating peripheral neuropathy, some Cx32 mutants are associated with transient or chronic CNS phenotypes. To investigate the molecular basis of these phenotypes, we generated transgenic mice expressing the T...
متن کاملConnexin32 and X-linked Charcot-Marie-Tooth disease.
Mutations in the gap junction gene connexin32 (Cx32) cause the X-linked form of Charcot-Marie-Tooth disease, an inherited demyelinating neuropathy. More than 130 different mutations have been described, affecting all portions of the Cx32 protein. In transfected cells, the mutant Cx32 proteins encoded by some Cx32 mutations fall to reach the cell surface; other mutant proteins reach the cell sur...
متن کاملConnexin32 is a myelin-related protein in the PNS and CNS.
We have examined the expression of a gap junction protein, connexin32 (Cx32), in Schwann cells and oligodendrocytes. In peripheral nerve, Cx32 is found in the paranodal myelin loops and Schmidt-Lanterman incisures of myelinating Schwann cells, and the levels of Cx32 protein and mRNA change in parallel with those of other myelin-related genes during development, Wallerian degeneration, and axona...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular and cellular neurosciences
دوره 32 3 شماره
صفحات -
تاریخ انتشار 2006